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Given a graph G and a set of vertices B C V/(G), the zero forcing process
starts by coloring every vertex v € B blue and the rest white, and then
iteratively selects blue vertices v which has exactly one white neighbor u
and coloring u blue.
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We say that B C V/(G) is a zero forcing set if this process ends with every
vertex colored blue, and we let zfs(G) be the set of zero forcing sets.
Define the zero forcing number Z(G) := mingc,6) |B|.
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The zero forcing number Z(G) tells us how many vertices we need so that
there exists some set of that size which is zero forcing. Here we ask: how
many vertices do we typically need so that a set of that size is “usually” a
zero forcing set?

Given p € [0, 1], define B,(G) to be the random set obtained by including
each vertex v € V(G) independently and with probability p. For example,
Bo(G) =0, Bi(G) = V(G), and By/>(G) =a uniformly random subset of
V(G).

Problem
Determine or bound Pr[B,(G) € zfs(G)].
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Define the threshold probability p(G) to be the unique p such that
Pr[By(G) € zfs(G)] = 1/2.
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Theorem (CGHLS 2022)

For every n-vertex graph G, we have

p(G) = Q(n~*?).

Corollary (Informal)

For every n-vertex graph G, a random set of size much less than \/n is
unlikely to be a zero forcing set.
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It turns out that many classical bounds for Z(G) extend to analogous
bounds for Pr[B,(G) € zfs(G)]. For example, it is well known that for any

n-vertex graph G, we have Z(G) < Z(Kp,).

Proposition

If G is an n-vertex graph, then

Pr[B,(G) € zfs(G)] > Pr[B,(K,) € zfs(K,)],

with equality if and only if p € {0,1} or G = K,,.
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It is well known that Z(G) > Z(P,), where P, is the n-vertex path.

Conjecture

If G is an n-vertex graph, then

Pr[By(G) € zfs(G)] < Pr[By(Pn) € zfs(Py)],

with equality if and only if p € {0,1} or G = P,.

v

This is a weaker version of a conjecture of Boyer et. al. which says for all k

1{B € 2ts(G) : |B| = k}| < |{B € zs(P,) : |Po| = K}|.
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Theorem (CGHLS 2022)

For every n-vertex graph G, we have

p(G) = Qn~*?) [= p(P)].-
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Proofs: Minimum Degree

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree § > 1, then

Pr[B,(G) € zfs(G)] < 6p°n.

The probability that a given vertex v can force at the start of the process
is exactly deg(v)pe&(V)(1 — p), so

Pr[B,(G) € 265(G)] < Pr[B,y(G) = V(G)] + Y deg(v)p™M(1 —p)
veV(G)

Z deg(v deg V),
veV(G)

If p > e~ 1/9 then the result is trivial, and otherwise each term is
minimized when deg(v) > ¢ is as small as possible. O
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Proofs: Path Thresholds

Recall p(G) is the unique p such that Pr[B,(G) € zfs(G)] = 1/2. Very

roughly, we prove p(G) > Q(n~1/?) by iteratively reducing the problem to
the following cases:

© G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

@ G contains no pendant path of length much longer than \/n.
© G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr(B,(G) € zfs(G)] < 2p*n,

and for this to be at least 1/2 we need p = Q(n~1/2). O
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Proofs: Trees

Theorem (CGHLS 2022)

If T is an n-vertex tree with n > ng, then

Pr[B,(T) € 2f5(T)] < Pr[Bo(Pn) € z£3(P,)].

The function on the righthand side exhibits two different behaviors when
p < n~tand p>> n~!. Accordingly, we break our proof into two cases

depending on how p compares to n~!.

If p>> n~1, then T not a path means it has two short pendant paths, and
essentially Pr[B,(T) € zfs(T)] is at most the probability that the union of
these short paths are forced.

If p < n~1, we give a crude upper bound for the number of zero forcing
sets of size k which is significantly better than the count for the path
when k is small. Since B,(T) will be very small, this gives the result. [



Open Problems

Recall p(G) is the unique p such that Pr[B,(G) € zfs(G)] = 1/2.



Open Problems

Recall p(G) is the unique p such that Pr[B,(G) € zfs(G)] = 1/2.

Conjecture
If G is an n-vertex graph which contains a clique of size k, then

p(G) = Q(v/k/n).

This is a random analog of Z(G) > w(G).



Open Problems

Recall p(G) is the unique p such that Pr[B,(G) € zfs(G)] = 1/2.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

p(G) = Q(v/k/n).

This is a random analog of Z(G) > w(G).

Problem
Determine p(P,P,), where P, x P, denotes the m x n grid.




Open Problems

Recall p(G) is the unique p such that Pr[B,(G) € zfs(G)] = 1/2.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

p(G) = Q(v/k/n).

This is a random analog of Z(G) > w(G).

Problem
Determine p(P,P,), where P, x P, denotes the m x n grid.

Question

Given G, p, k, which set B C V/(G) of size k maximizes Pr[B, € zfs(G)]?
What is this value?
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