# Zero Forcing with Random Sets

Sam Spiro, Rutgers University

Joint with Bryan Curtis, Luyining Gan, Jamie Haddock, and Rachel Lawrence

Given a graph G and a set of vertices  $B \subseteq V(G)$ , the zero forcing process starts by coloring every vertex  $v \in B$  blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.



・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Given a graph G and a set of vertices  $B \subseteq V(G)$ , the zero forcing process starts by coloring every vertex  $v \in B$  blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.



We say that  $B \subseteq V(G)$  is a zero forcing set if this process ends with every vertex colored blue, and we let zfs(G) be the set of zero forcing sets.

- 日本 本語 本 本 田 本 王 本 田 本

Given a graph G and a set of vertices  $B \subseteq V(G)$ , the zero forcing process starts by coloring every vertex  $v \in B$  blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.



We say that  $B \subseteq V(G)$  is a zero forcing set if this process ends with every vertex colored blue, and we let zfs(G) be the set of zero forcing sets. Define the zero forcing number  $Z(G) := \min_{B \in zfs(G)} |B|$ .

The zero forcing number Z(G) tells us how many vertices we need so that there exists **some** set of that size which is zero forcing.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given  $p \in [0, 1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given  $p \in [0, 1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p. For example,  $B_0(G) =$ 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Given  $p \in [0, 1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p. For example,  $B_0(G) = \emptyset$ 

Given  $p \in [0, 1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p. For example,  $B_0(G) = \emptyset$ ,  $B_1(G)$ 

Given  $p \in [0, 1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p. For example,  $B_0(G) = \emptyset$ ,  $B_1(G) = V(G)$ 

Given  $p \in [0, 1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p. For example,  $B_0(G) = \emptyset$ ,  $B_1(G) = V(G)$ , and  $B_{1/2}(G) =$ 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Given  $p \in [0,1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p. For example,  $B_0(G) = \emptyset$ ,  $B_1(G) = V(G)$ , and  $B_{1/2}(G) =$ a uniformly random subset of V(G).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Given  $p \in [0,1]$ , define  $B_p(G)$  to be the random set obtained by including each vertex  $v \in V(G)$  independently and with probability p. For example,  $B_0(G) = \emptyset$ ,  $B_1(G) = V(G)$ , and  $B_{1/2}(G) =$ a uniformly random subset of V(G).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Problem

Determine or bound  $\Pr[B_p(G) \in \operatorname{zfs}(G)]$ .





æ

・ロ・ ・ 四・ ・ 回・ ・ 回・



▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで



Define the threshold probability p(G) to be the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

| Family               | Threshold Probability              |
|----------------------|------------------------------------|
| $K_n$                | $1 - \Theta(n^{-1})$               |
| $nK_1$               | $2^{-1/n}$                         |
| $K_{n_1,\cdots,n_k}$ | $1 - \Theta_k(\min_i\{n_i^{-1}\})$ |
| $P_n$                | $\Theta(n^{-1/2})$                 |
| $C_n$                | $\Theta(n^{-1/2})$                 |
| $W_n$                | $\Theta(n^{-1/3})$                 |

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

#### Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$p(G) = \Omega(n^{-1/2}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$p(G) = \Omega(n^{-1/2}).$$

#### Corollary (Informal)

For every n-vertex graph G, a random set of size much less than  $\sqrt{n}$  is unlikely to be a zero forcing set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

It turns out that many classical bounds for Z(G) extend to analogous bounds for  $Pr[B_p(G) \in zfs(G)]$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

It turns out that many classical bounds for Z(G) extend to analogous bounds for  $\Pr[B_p(G) \in \operatorname{zfs}(G)]$ . For example, it is well known that for any *n*-vertex graph G, we have  $Z(G) \leq Z(\overline{K_n})$ .

It turns out that many classical bounds for Z(G) extend to analogous bounds for  $\Pr[B_p(G) \in \operatorname{zfs}(G)]$ . For example, it is well known that for any *n*-vertex graph G, we have  $Z(G) \leq Z(\overline{K_n})$ .

#### Proposition

If G is an n-vertex graph, then

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \ge \Pr[B_p(\overline{K_n}) \in \operatorname{zfs}(\overline{K_n})],$$

with equality if and only if  $p \in \{0,1\}$  or  $G = \overline{K_n}$ .

It is well known that  $Z(G) \ge Z(P_n)$ , where  $P_n$  is the *n*-vertex path.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

It is well known that  $Z(G) \ge Z(P_n)$ , where  $P_n$  is the *n*-vertex path.

#### Conjecture

If G is an n-vertex graph, then

 $\Pr[B_p(G) \in \operatorname{zfs}(G)] \leq \Pr[B_p(P_n) \in \operatorname{zfs}(P_n)],$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with equality if and only if  $p \in \{0,1\}$  or  $G = P_n$ .

It is well known that  $Z(G) \ge Z(P_n)$ , where  $P_n$  is the *n*-vertex path.

Conjecture

If G is an n-vertex graph, then

$$\Pr[B_{\rho}(G) \in \operatorname{zfs}(G)] \leq \Pr[B_{\rho}(P_n) \in \operatorname{zfs}(P_n)],$$

with equality if and only if  $p \in \{0,1\}$  or  $G = P_n$ .

This is a weaker version of a conjecture of Boyer et. al. which says for all k

$$|\{B \in \operatorname{zfs}(G) : |B| = k\}| \le |\{B \in \operatorname{zfs}(P_n) : |P_n| = k\}|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Theorem (CGHLS 2022)

There exists some  $n_0 \in \mathbb{N}$  such that if T is an n-vertex tree with  $n \ge n_0$ , then

```
\Pr[B_{\rho}(T) \in \operatorname{zfs}(T)] \leq \Pr[B_{\rho}(P_n) \in \operatorname{zfs}(P_n)],
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

with equality if and only if  $p \in \{0,1\}$  or  $T = P_n$ .

#### Theorem (CGHLS 2022)

There exists some  $n_0 \in \mathbb{N}$  such that if T is an n-vertex tree with  $n \ge n_0$ , then

$$\Pr[B_{\rho}(T) \in \operatorname{zfs}(T)] \leq \Pr[B_{\rho}(P_n) \in \operatorname{zfs}(P_n)],$$

with equality if and only if  $p \in \{0,1\}$  or  $T = P_n$ .

#### Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$p(G) = \Omega(n^{-1/2}) [= p(P_n)].$$

It is well known that  $Z(G) \ge \delta(G)$ .



It is well known that  $Z(G) \ge \delta(G)$ .

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree  $\delta \geq 1$ , then

 $\Pr[B_p(G) \in zfs(G)] \leq \delta p^{\delta} n.$ 

#### Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree  $\delta \geq 1$ , then

 $\Pr[B_p(G) \in zfs(G)] \leq \delta p^{\delta} n.$ 

#### Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree  $\delta \geq 1$ , then

 $\Pr[B_{\rho}(G) \in zfs(G)] \leq \delta p^{\delta} n.$ 

The probability that a given vertex v can force at the start of the process is exactly  $\deg(v)p^{\deg(v)}(1-p)$ 

#### Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree  $\delta \geq 1$ , then

 $\Pr[B_{\rho}(G) \in zfs(G)] \leq \delta p^{\delta} n.$ 

The probability that a given vertex v can force at the start of the process is exactly  $\deg(v)p^{\deg(v)}(1-p)$ , so

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \le \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

#### Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree  $\delta \geq 1$ , then

 $\Pr[B_{\rho}(G) \in zfs(G)] \leq \delta p^{\delta} n.$ 

The probability that a given vertex v can force at the start of the process is exactly  $\deg(v)p^{\deg(v)}(1-p)$ , so

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \le \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

$$\leq \sum_{v \in V(G)} \deg(v) p^{\deg(v)}.$$

#### Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree  $\delta \geq 1$ , then

 $\Pr[B_{\rho}(G) \in zfs(G)] \leq \delta p^{\delta} n.$ 

The probability that a given vertex v can force at the start of the process is exactly  $\deg(v)p^{\deg(v)}(1-p)$ , so

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \leq \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

$$\leq \sum_{v \in V(G)} \deg(v) p^{\deg(v)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If  $p \ge e^{-1/\delta}$  then the result is trivial

#### Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree  $\delta \geq 1$ , then

 $\Pr[B_p(G) \in zfs(G)] \leq \delta p^{\delta} n.$ 

The probability that a given vertex v can force at the start of the process is exactly  $\deg(v)p^{\deg(v)}(1-p)$ , so

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \le \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

$$\leq \sum_{v \in V(G)} \deg(v) p^{\deg(v)}$$

If  $p \ge e^{-1/\delta}$  then the result is trivial, and otherwise each term is minimized when deg $(v) \ge \delta$  is as small as possible.

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ .

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ . Very roughly, we prove  $p(G) \ge \Omega(n^{-1/2})$  by iteratively reducing the problem to the following cases:

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ . Very roughly, we prove  $p(G) \ge \Omega(n^{-1/2})$  by iteratively reducing the problem to the following cases:

G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ . Very roughly, we prove  $p(G) \ge \Omega(n^{-1/2})$  by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- **2** G contains no pendant path of length much longer than  $\sqrt{n}$ .

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ . Very roughly, we prove  $p(G) \ge \Omega(n^{-1/2})$  by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- **2** G contains no pendant path of length much longer than  $\sqrt{n}$ .
- **③** *G* contains no pendant paths.

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ . Very roughly, we prove  $p(G) \ge \Omega(n^{-1/2})$  by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- **2** G contains no pendant path of length much longer than  $\sqrt{n}$ .
- **③** *G* contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2.

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ . Very roughly, we prove  $p(G) \ge \Omega(n^{-1/2})$  by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- **2** G contains no pendant path of length much longer than  $\sqrt{n}$ .
- **③** *G* contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2. By our minimum degree theorem,

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \leq 2p^2 n$$

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ . Very roughly, we prove  $p(G) \ge \Omega(n^{-1/2})$  by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- **2** G contains no pendant path of length much longer than  $\sqrt{n}$ .
- **③** *G* contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2. By our minimum degree theorem,

$$\Pr[B_p(G) \in zfs(G)] \le 2p^2n,$$

and for this to be at least 1/2 we need  $p = \Omega(n^{-1/2})$ .

#### Theorem (CGHLS 2022)

If T is an n-vertex tree with  $n \ge n_0$ , then

 $\Pr[B_p(T) \in \mathrm{zfs}(T)] \leq \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)].$ 

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

#### Theorem (CGHLS 2022)

If T is an n-vertex tree with  $n \ge n_0$ , then

$$\Pr[B_{\rho}(T) \in \mathrm{zfs}(T)] \leq \Pr[B_{\rho}(P_n) \in \mathrm{zfs}(P_n)].$$

The function on the righthand side exhibits two different behaviors when  $p \ll n^{-1}$  and  $p \gg n^{-1}$ .

#### Theorem (CGHLS 2022)

If T is an n-vertex tree with  $n \ge n_0$ , then

$$\Pr[B_p(T) \in \operatorname{zfs}(T)] \leq \Pr[B_p(P_n) \in \operatorname{zfs}(P_n)].$$

The function on the righthand side exhibits two different behaviors when  $p \ll n^{-1}$  and  $p \gg n^{-1}$ . Accordingly, we break our proof into two cases depending on how p compares to  $n^{-1}$ .

#### Theorem (CGHLS 2022)

If T is an n-vertex tree with  $n \ge n_0$ , then

 $\Pr[B_p(T) \in \mathrm{zfs}(T)] \le \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)].$ 

The function on the righthand side exhibits two different behaviors when  $p \ll n^{-1}$  and  $p \gg n^{-1}$ . Accordingly, we break our proof into two cases depending on how p compares to  $n^{-1}$ .

If  $p \gg n^{-1}$ , then T not a path means it has two short pendant paths, and essentially  $\Pr[B_p(T) \in \operatorname{zfs}(T)]$  is at most the probability that the union of these short paths are forced.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### Theorem (CGHLS 2022)

If T is an n-vertex tree with  $n \ge n_0$ , then

 $\Pr[B_p(T) \in \mathrm{zfs}(T)] \le \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)].$ 

The function on the righthand side exhibits two different behaviors when  $p \ll n^{-1}$  and  $p \gg n^{-1}$ . Accordingly, we break our proof into two cases depending on how p compares to  $n^{-1}$ .

If  $p \gg n^{-1}$ , then T not a path means it has two short pendant paths, and essentially  $\Pr[B_p(T) \in \operatorname{zfs}(T)]$  is at most the probability that the union of these short paths are forced.

If  $p \ll n^{-1}$ , we give a crude upper bound for the number of zero forcing sets of size k which is significantly better than the count for the path when k is small.

#### Theorem (CGHLS 2022)

If T is an n-vertex tree with  $n \ge n_0$ , then

 $\Pr[B_p(T) \in \mathrm{zfs}(T)] \leq \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)].$ 

The function on the righthand side exhibits two different behaviors when  $p \ll n^{-1}$  and  $p \gg n^{-1}$ . Accordingly, we break our proof into two cases depending on how p compares to  $n^{-1}$ .

If  $p \gg n^{-1}$ , then T not a path means it has two short pendant paths, and essentially  $\Pr[B_p(T) \in \operatorname{zfs}(T)]$  is at most the probability that the union of these short paths are forced.

If  $p \ll n^{-1}$ , we give a crude upper bound for the number of zero forcing sets of size k which is significantly better than the count for the path when k is small. Since  $B_p(T)$  will be very small, this gives the result.

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ .

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ .

#### Conjecture

If G is an n-vertex graph which contains a clique of size k, then

 $p(G) = \Omega(\sqrt{k/n}).$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is a random analog of  $Z(G) \ge \omega(G)$ .

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ .

#### Conjecture

If G is an n-vertex graph which contains a clique of size k, then

 $p(G) = \Omega(\sqrt{k/n}).$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is a random analog of  $Z(G) \ge \omega(G)$ .

#### Problem

Determine  $p(P_m \Box P_n)$ , where  $P_m \times P_n$  denotes the  $m \times n$  grid.

Recall p(G) is the unique p such that  $\Pr[B_p(G) \in \operatorname{zfs}(G)] = 1/2$ .

#### Conjecture

If G is an n-vertex graph which contains a clique of size k, then

 $p(G) = \Omega(\sqrt{k/n}).$ 

This is a random analog of  $Z(G) \ge \omega(G)$ .

#### Problem

Determine  $p(P_m \Box P_n)$ , where  $P_m \times P_n$  denotes the  $m \times n$  grid.

#### Question

Given G, p, k, which set  $B \subseteq V(G)$  of size k maximizes  $\Pr[B_p \in zfs(G)]$ ? What is this value?