Zero Forcing with Random Sets

Sam Spiro, Rutgers University

Joint with Bryan Curtis, Luyining Gan, Jamie Haddock, and Rachel
Lawrence

Given a graph G and a set of vertices $B \subseteq V(G)$, the zero forcing process starts by coloring every vertex $v \in B$ blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.

Given a graph G and a set of vertices $B \subseteq V(G)$, the zero forcing process starts by coloring every vertex $v \in B$ blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.

We say that $B \subseteq V(G)$ is a zero forcing set if this process ends with every vertex colored blue, and we let $\operatorname{zfs}(G)$ be the set of zero forcing sets.

Given a graph G and a set of vertices $B \subseteq V(G)$, the zero forcing process starts by coloring every vertex $v \in B$ blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.

We say that $B \subseteq V(G)$ is a zero forcing set if this process ends with every vertex colored blue, and we let $\operatorname{zfs}(G)$ be the set of zero forcing sets. Define the zero forcing number $Z(G):=\min _{B \in \mathrm{zfs}(G)}|B|$.

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing.

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p.

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_{0}(G)=$

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_{0}(G)=\emptyset$

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_{0}(G)=\emptyset, \quad B_{1}(G)$

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_{0}(G)=\emptyset, B_{1}(G)=V(G)$

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_{0}(G)=\emptyset, B_{1}(G)=V(G)$, and $B_{1 / 2}(G)=$

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_{0}(G)=\emptyset, B_{1}(G)=V(G)$, and $B_{1 / 2}(G)=$ a uniformly random subset of $V(G)$.

The zero forcing number $Z(G)$ tells us how many vertices we need so that there exists some set of that size which is zero forcing. Here we ask: how many vertices do we typically need so that a set of that size is "usually" a zero forcing set?

Given $p \in[0,1]$, define $B_{p}(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_{0}(G)=\emptyset, B_{1}(G)=V(G)$, and $B_{1 / 2}(G)=$ a uniformly random subset of $V(G)$.

Problem

Determine or bound $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]$.

-_	Path
-	Square Grid
-_	Hypercube
	Binary Tree

Define the threshold probability $p(G)$ to be the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$.

Family	Threshold Probability
K_{n}	$1-\Theta\left(n^{-1}\right)$
$n K_{1}$	$2^{-1 / n}$
$K_{n_{1}, \cdots, n_{k}}$	$1-\Theta_{k}\left(\min _{i}\left\{n_{i}^{-1}\right\}\right)$
P_{n}	$\Theta\left(n^{-1 / 2}\right)$
C_{n}	$\Theta\left(n^{-1 / 2}\right)$
W_{n}	$\Theta\left(n^{-1 / 3}\right)$

Main Results

Main Results

Theorem (CGHLS 2022)
For every n-vertex graph G, we have

$$
p(G)=\Omega\left(n^{-1 / 2}\right) .
$$

Main Results

Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$
p(G)=\Omega\left(n^{-1 / 2}\right)
$$

Corollary (Informal)

For every n-vertex graph G, a random set of size much less than \sqrt{n} is unlikely to be a zero forcing set.

Main Results

It turns out that many classical bounds for $Z(G)$ extend to analogous bounds for $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]$.

Main Results

It turns out that many classical bounds for $Z(G)$ extend to analogous bounds for $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]$. For example, it is well known that for any n-vertex graph G, we have $Z(G) \leq Z\left(\overline{K_{n}}\right)$.

Main Results

It turns out that many classical bounds for $Z(G)$ extend to analogous bounds for $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]$. For example, it is well known that for any n-vertex graph G, we have $Z(G) \leq Z\left(\overline{K_{n}}\right)$.

Proposition

If G is an n-vertex graph, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \geq \operatorname{Pr}\left[B_{p}\left(\overline{K_{n}}\right) \in \operatorname{zfs}\left(\overline{K_{n}}\right)\right],
$$

with equality if and only if $p \in\{0,1\}$ or $G=\overline{K_{n}}$.

Main Results

It is well known that $Z(G) \geq Z\left(P_{n}\right)$, where P_{n} is the n-vertex path.

Main Results

It is well known that $Z(G) \geq Z\left(P_{n}\right)$, where P_{n} is the n-vertex path.

Conjecture

If G is an n-vertex graph, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right],
$$

with equality if and only if $p \in\{0,1\}$ or $G=P_{n}$.

Main Results

It is well known that $Z(G) \geq Z\left(P_{n}\right)$, where P_{n} is the n-vertex path.

Conjecture

If G is an n-vertex graph, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right],
$$

with equality if and only if $p \in\{0,1\}$ or $G=P_{n}$.
This is a weaker version of a conjecture of Boyer et. al. which says for all k

$$
|\{B \in \operatorname{zfs}(G):|B|=k\}| \leq\left|\left\{B \in \operatorname{zfs}\left(P_{n}\right):\left|P_{n}\right|=k\right\}\right| .
$$

Main Results

Theorem (CGHLS 2022)
There exists some $n_{0} \in \mathbb{N}$ such that if T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right],
$$

with equality if and only if $p \in\{0,1\}$ or $T=P_{n}$.

Main Results

Theorem (CGHLS 2022)
There exists some $n_{0} \in \mathbb{N}$ such that if T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right],
$$

with equality if and only if $p \in\{0,1\}$ or $T=P_{n}$.

Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$
p(G)=\Omega\left(n^{-1 / 2}\right)\left[=p\left(P_{n}\right)\right] .
$$

Main Results

It is well known that $Z(G) \geq \delta(G)$.

Main Results

It is well known that $Z(G) \geq \delta(G)$.
Theorem (CGHLS 2022)
If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \delta p^{\delta} n .
$$

Proofs: Minimum Degree

Theorem (CGHLS 2022)
If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \delta p^{\delta} n .
$$

Proofs: Minimum Degree

Theorem (CGHLS 2022)
If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \delta p^{\delta} n
$$

The probability that a given vertex v can force at the start of the process is exactly $\operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p)$

Proofs: Minimum Degree

Theorem (CGHLS 2022)
If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \delta p^{\delta} n
$$

The probability that a given vertex v can force at the start of the process is exactly $\operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p)$, so

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \operatorname{Pr}\left[B_{p}(G)=V(G)\right]+\sum_{v \in V(G)} \operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p)
$$

Proofs: Minimum Degree

Theorem (CGHLS 2022)
If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \delta p^{\delta} n
$$

The probability that a given vertex v can force at the start of the process is exactly $\operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p)$, so

$$
\begin{aligned}
& \operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \operatorname{Pr}\left[B_{p}(G)=V(G)\right]+\sum_{v \in V(G)} \operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p) \\
& \leq \sum_{v \in V(G)} \operatorname{deg}(v) p^{\operatorname{deg}(v)}
\end{aligned}
$$

Proofs: Minimum Degree

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \delta p^{\delta} n
$$

The probability that a given vertex v can force at the start of the process is exactly $\operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p)$, so

$$
\begin{aligned}
& \operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \operatorname{Pr}\left[B_{p}(G)=V(G)\right]+\sum_{v \in V(G)} \operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p) \\
& \leq \sum_{v \in V(G)} \operatorname{deg}(v) p^{\operatorname{deg}(v)}
\end{aligned}
$$

If $p \geq e^{-1 / \delta}$ then the result is trivial

Proofs: Minimum Degree

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \delta p^{\delta} n
$$

The probability that a given vertex v can force at the start of the process is exactly $\operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p)$, so

$$
\begin{aligned}
& \operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq \operatorname{Pr}\left[B_{p}(G)=V(G)\right]+\sum_{v \in V(G)} \operatorname{deg}(v) p^{\operatorname{deg}(v)}(1-p) \\
& \leq \sum_{v \in V(G)} \operatorname{deg}(v) p^{\operatorname{deg}(v)}
\end{aligned}
$$

If $p \geq e^{-1 / \delta}$ then the result is trivial, and otherwise each term is minimized when $\operatorname{deg}(v) \geq \delta$ is as small as possible.

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$.

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$. Very roughly, we prove $p(G) \geq \Omega\left(n^{-1 / 2}\right)$ by iteratively reducing the problem to the following cases:

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$. Very roughly, we prove $p(G) \geq \Omega\left(n^{-1 / 2}\right)$ by iteratively reducing the problem to the following cases:
(1) G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$. Very roughly, we prove $p(G) \geq \Omega\left(n^{-1 / 2}\right)$ by iteratively reducing the problem to the following cases:
(1) G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
(2) G contains no pendant path of length much longer than \sqrt{n}.

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$. Very roughly, we prove $p(G) \geq \Omega\left(n^{-1 / 2}\right)$ by iteratively reducing the problem to the following cases:
(1) G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
(2) G contains no pendant path of length much longer than \sqrt{n}.
(3) G contains no pendant paths.

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$. Very roughly, we prove $p(G) \geq \Omega\left(n^{-1 / 2}\right)$ by iteratively reducing the problem to the following cases:
(1) G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
(2) G contains no pendant path of length much longer than \sqrt{n}.
(3) G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2.

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$. Very roughly, we prove $p(G) \geq \Omega\left(n^{-1 / 2}\right)$ by iteratively reducing the problem to the following cases:
(1) G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
(2) G contains no pendant path of length much longer than \sqrt{n}.
(3) G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2. By our minimum degree theorem,

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq 2 p^{2} n
$$

Proofs: Path Thresholds

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$. Very roughly, we prove $p(G) \geq \Omega\left(n^{-1 / 2}\right)$ by iteratively reducing the problem to the following cases:
(1) G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
(2) G contains no pendant path of length much longer than \sqrt{n}.
(3) G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2. By our minimum degree theorem,

$$
\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right] \leq 2 p^{2} n
$$

and for this to be at least $1 / 2$ we need $p=\Omega\left(n^{-1 / 2}\right)$.

Proofs: Trees

Theorem (CGHLS 2022)
If T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \mathrm{zfs}\left(P_{n}\right)\right] .
$$

Proofs: Trees

Theorem (CGHLS 2022)
If T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right]
$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$.

Proofs: Trees

Theorem (CGHLS 2022)
If T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right]
$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1}.

Proofs: Trees

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right] .
$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1}.

If $p \gg n^{-1}$, then T not a path means it has two short pendant paths, and essentially $\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right]$ is at most the probability that the union of these short paths are forced.

Proofs: Trees

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right] .
$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1}.

If $p \gg n^{-1}$, then T not a path means it has two short pendant paths, and essentially $\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right]$ is at most the probability that the union of these short paths are forced.

If $p \ll n^{-1}$, we give a crude upper bound for the number of zero forcing sets of size k which is significantly better than the count for the path when k is small.

Proofs: Trees

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \geq n_{0}$, then

$$
\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right] \leq \operatorname{Pr}\left[B_{p}\left(P_{n}\right) \in \operatorname{zfs}\left(P_{n}\right)\right] .
$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1}.

If $p \gg n^{-1}$, then T not a path means it has two short pendant paths, and essentially $\operatorname{Pr}\left[B_{p}(T) \in \operatorname{zfs}(T)\right]$ is at most the probability that the union of these short paths are forced.

If $p \ll n^{-1}$, we give a crude upper bound for the number of zero forcing sets of size k which is significantly better than the count for the path when k is small. Since $B_{p}(T)$ will be very small, this gives the result.

Open Problems

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$.

Open Problems

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

$$
p(G)=\Omega(\sqrt{k / n}) .
$$

This is a random analog of $Z(G) \geq \omega(G)$.

Open Problems

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

$$
p(G)=\Omega(\sqrt{k / n}) .
$$

This is a random analog of $Z(G) \geq \omega(G)$.

Problem

Determine $p\left(P_{m} \square P_{n}\right)$, where $P_{m} \times P_{n}$ denotes the $m \times n$ grid.

Open Problems

Recall $p(G)$ is the unique p such that $\operatorname{Pr}\left[B_{p}(G) \in \operatorname{zfs}(G)\right]=1 / 2$.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

$$
p(G)=\Omega(\sqrt{k / n}) .
$$

This is a random analog of $Z(G) \geq \omega(G)$.

Problem

Determine $p\left(P_{m} \square P_{n}\right)$, where $P_{m} \times P_{n}$ denotes the $m \times n$ grid.

Question

Given G, p, k, which set $B \subseteq V(G)$ of size k maximizes $\operatorname{Pr}\left[B_{p} \in \operatorname{zfs}(G)\right]$? What is this value?

