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Given a graph G and a set of vertices B ⊆ V (G ), the zero forcing process
starts by coloring every vertex v ∈ B blue and the rest white, and then
iteratively selects blue vertices v which has exactly one white neighbor u
and coloring u blue.

We say that B ⊆ V (G ) is a zero forcing set if this process ends with every
vertex colored blue, and we let zfs(G ) be the set of zero forcing sets.
Define the zero forcing number Z (G ) := minB∈zfs(G) |B|.
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The zero forcing number Z (G ) tells us how many vertices we need so that
there exists some set of that size which is zero forcing.

Here we ask: how
many vertices do we typically need so that a set of that size is “usually” a
zero forcing set?

Given p ∈ [0, 1], define Bp(G ) to be the random set obtained by including
each vertex v ∈ V (G ) independently and with probability p. For example,
B0(G ) = ∅, B1(G ) = V (G ), and B1/2(G ) =a uniformly random subset of
V (G ).

Problem

Determine or bound Pr[Bp(G ) ∈ zfs(G )].
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Define the threshold probability p(G ) to be the unique p such that
Pr[Bp(G ) ∈ zfs(G )] = 1/2.
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Main Results

Theorem (CGHLS 2022)

For every n-vertex graph G, we have

p(G ) = Ω(n−1/2).

Corollary (Informal)

For every n-vertex graph G, a random set of size much less than
√
n is

unlikely to be a zero forcing set.
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Main Results

It turns out that many classical bounds for Z (G ) extend to analogous
bounds for Pr[Bp(G ) ∈ zfs(G )].

For example, it is well known that for any
n-vertex graph G , we have Z (G ) ≤ Z (Kn).

Proposition

If G is an n-vertex graph, then

Pr[Bp(G ) ∈ zfs(G )] ≥ Pr[Bp(Kn) ∈ zfs(Kn)],

with equality if and only if p ∈ {0, 1} or G = Kn.
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Main Results

It is well known that Z (G ) ≥ Z (Pn), where Pn is the n-vertex path.

Conjecture

If G is an n-vertex graph, then

Pr[Bp(G ) ∈ zfs(G )] ≤ Pr[Bp(Pn) ∈ zfs(Pn)],

with equality if and only if p ∈ {0, 1} or G = Pn.

This is a weaker version of a conjecture of Boyer et. al. which says for all k

|{B ∈ zfs(G ) : |B| = k}| ≤ |{B ∈ zfs(Pn) : |Pn| = k}|.
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Main Results

It is well known that Z (G ) ≥ δ(G ).

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree δ ≥ 1, then

Pr[Bp(G ) ∈ zfs(G )] ≤ δpδn.
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Proofs: Minimum Degree

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree δ ≥ 1, then

Pr[Bp(G ) ∈ zfs(G )] ≤ δpδn.

The probability that a given vertex v can force at the start of the process
is exactly deg(v)pdeg(v)(1− p), so

Pr[Bp(G ) ∈ zfs(G )] ≤ Pr[Bp(G ) = V (G )] +
∑

v∈V (G)

deg(v)pdeg(v)(1− p)

≤
∑

v∈V (G)

deg(v)pdeg(v).

If p ≥ e−1/δ then the result is trivial, and otherwise each term is
minimized when deg(v) ≥ δ is as small as possible.
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Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2.

Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2. Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2. Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2. Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2. Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2. Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2.

By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2. Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n

,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Path Thresholds

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2. Very
roughly, we prove p(G ) ≥ Ω(n−1/2) by iteratively reducing the problem to
the following cases:

1 G contains no vertex attached to two “pendant paths” (i.e.
subdivisions of pendant edges).

2 G contains no pendant path of length much longer than
√
n.

3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum
degree at least 2. By our minimum degree theorem,

Pr[Bp(G ) ∈ zfs(G )] ≤ 2p2n,

and for this to be at least 1/2 we need p = Ω(n−1/2).



Proofs: Trees

Theorem (CGHLS 2022)

If T is an n-vertex tree with n ≥ n0, then

Pr[Bp(T ) ∈ zfs(T )] ≤ Pr[Bp(Pn) ∈ zfs(Pn)].

The function on the righthand side exhibits two different behaviors when
p � n−1 and p � n−1. Accordingly, we break our proof into two cases
depending on how p compares to n−1.

If p � n−1, then T not a path means it has two short pendant paths, and
essentially Pr[Bp(T ) ∈ zfs(T )] is at most the probability that the union of
these short paths are forced.

If p � n−1, we give a crude upper bound for the number of zero forcing
sets of size k which is significantly better than the count for the path
when k is small. Since Bp(T ) will be very small, this gives the result.
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depending on how p compares to n−1.

If p � n−1, then T not a path means it has two short pendant paths, and
essentially Pr[Bp(T ) ∈ zfs(T )] is at most the probability that the union of
these short paths are forced.

If p � n−1, we give a crude upper bound for the number of zero forcing
sets of size k which is significantly better than the count for the path
when k is small. Since Bp(T ) will be very small, this gives the result.



Open Problems

Recall p(G ) is the unique p such that Pr[Bp(G ) ∈ zfs(G )] = 1/2.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

p(G ) = Ω(
√
k/n).

This is a random analog of Z (G ) ≥ ω(G ).

Problem

Determine p(Pm�Pn), where Pm × Pn denotes the m × n grid.

Question

Given G , p, k , which set B ⊆ V (G ) of size k maximizes Pr[Bp ∈ zfs(G )]?
What is this value?
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